Содержание
Криптографические xэш - функции
- Хэширование
- преобразование исходного информационного массива произвольной длины в битовую строку фиксированной длины.
- Криптографическая хэш-функция
- хэш-функция, являющаяся криптографически стойкой, то есть удовлетворяющая ряду требований, специфичных для криптографических приложений.
Требования к криптографически стойким хэш-функциям :
- Для заданного значения хэш-функции должно быть невозможно вычислить блок данных , для которого .
- Стойкость к коллизиям первого рода: для заданного сообщения должно быть вычислительно невозможно подобрать другое сообщение , для которого .
- Стойкость к коллизиям второго рода: должно быть вычислительно невозможно подобрать пару сообщений , имеющих одинаковый хэш.
- Для криптографических хэш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект).
Математически хэш функцию можно записать в виде: , где – исходное сообщение, – значение хэш-функции.
Функции хэширования могут применяться в качестве криптографических генераторов псевдослучайных чисел для создания нескольких ключей на основе одного секретного ключа. Криптографические хэш-функции используют для защиты информации от несанкционированного доступа. Примером таких функций являются MD5, SHA-1 и SHA-2. Также хэш-функции применяют в базах данных для хранения паролей и оганизации хэш-таблиц.
Несмотря на повсеместное применение функций хэширования, мы знаем о них гораздо меньше, чем о блочных шифрах. По сравнению с блочными шифрами функции хэширования крайне мало исследованы.
Итеративная последовательная схема
Схема Меркеля-Дамгарда сегодня - основание для многих функций криптографического хэширования. Для построения хэш-функций используется cтруктура Меркля-Дамгарда. Cжимающая функция преобразует блоков, размер каждого состоит из бит.
В качестве начального значения переменной используется вектор инициализации . Каждый следующий блок данных объединяется с результатом на предыдущей итерации. Если длина блока < , дополняется длиной сообщения и . Значением хэш-функции являются выходные бит последней итерации.
Функция сжатия
- Односторонняя функция сжатия
- функция для преобразования двух входных блоков фиксированной длины в выходной блок фиксированной длины.
В настоящее время популярны два подхода для создания хэш-функций. В первом подходе функция сжатия сделана на "пустом месте": она разработана только для этой цели. Во втором подходе блочный шифр с симметричными ключами служит функцией сжатия.
Хэш-функции, сделанные на "пустом месте"
MD5
Серия алгоритмов по построению дайджеста сообщения, была разработанна профессором Рональдом Л. Ривестом из Массачусетского технологического института. MD5 был выпущен в 1991 году для замены предыдущего алгоритма, MD4. Позже Гансом Доббертином(Hans Dobbertin) были найдены недостатки алгоритма MD4.В 1996 году Ганс Доббертин объявил о коллизии в алгоритме, и было предложено использовать другие алгоритмы хэширования, такие как Whirlpool, и SHA-1.
SHA-1
В 1993 году национальный Институт Стандартов и Технологии (NIST - National Institute of Standards and Technology) разработал алгоритм безопасного хеширования SHA-0. В 1995 г. он был пересмотрен и опубликован под названием FIP 180-1 (SHA-1). Позже были оперделены четыре новые версии: SHA-224, SHA-256, SHA-384 и SHA-512. Сравнерние различных версий SHA приведено в таблице:
SHA-1 является безопасным алгоритмом, поскольку в вычислительном отношении невозможно найти сообщение, которое соответствует данному дайджесу сообщения, или найти два разных сообщения, которые производят один и тот же дайджест. Любое изменение сообщения, с очень высокой вероятностью, приведет к изменению дайджеста сообщения.
Сравнение MD5 и SHA-1:
SHA-1 содержит больше шагов (80 вместо 64) и выполняется на 160-битном буфере по сравнению со 128-битным буфером MD5. Таким образом, SHA-1 должен выполняться приблизительно на 25% медленнее, чем MD5 на той же аппаратуре. Оба алгоритма просты и в описании, и в реализации, не требуют больших программ или подстановочных таблиц. Сравнение этих версий приведено в таблице:
Хэш-функции, основанные на блочных шифрах
В качестве функции сжатия можно использовать блочный шифр с симметричными ключами, например трехкратный DES или AES. Рассмотрим несколько схем для построения сжимающей функции
Сxема Рабина
Сxема Рабина базируется на схеме Меркеля-Дамгарда. Функция сжатия заменяется любым алгоритмом шифрования. Блок сообщения используется как ключ; предварительно созданный дайджест используется как исходный текст. Зашифрованный текст - новый дайджест сообщения. Размер дайджеста совпадает с размером блочного шифра данных в основной криптографической системе.
Схема Девиса-Мейера (Davies-Mayer)
В отличии от схемы Рабина использует прямую связь для защиты от атаки "сведения в середину".
Схема Миагучи-Пренеля (Miyaguchi–Preneel)
Чтобы сделать алгоритм более устойчивым к атаке, исходный текст , блок и зашифрованный текст складываются с помощью и создают новый блок . Эта схема используется в Whirlpool для создания хэш-функции.
Коллизия хэш-функций
- Коллизия хэш-функций
- Коллизией хэш-функций называется два различных входных блока данных и таких, что .
Коллизии существуют для большинства хэш-функций, но для криптографически стойких хэш-функций частота их возникновения минимальна. Если множество различных входных данных конечно, можно задать инъективную хэш-функцию, по определению не имеющую коллизий. Однако для хэш-функций, принимающих вход переменной длины и возвращающих хеш постоянной длины (таких как MD5), коллизии обязаны существовать, поскольку хотя бы для одного значения хэш-функции соответствующее ему множество входных данных будет бесконечно — и любые два набора данных из этого множества образуют коллизию.
Мерой криптостойкости хэш-функции является вычислительная сложность нахождения коллизии. В идеале не должно существовать способа отыскания коллизий более быстрого, чем полный перебор. Если для некоторой хэш-функции находится способ получения коллизий существенно более быстрый, чем полный перебор, то эта хэш-функция перестаёт считаться криптостойкой и использоваться для передачи и хранения секретной информации. Литература
- Scott, C. A Critical Look at Cryptographic Hash Function Literature / Contini Scott, Steinfeld Ron, Pieprzyk Josef, Matusiewicz Krystian. — New Jersey, USA : World Scientific Publishing, 2008. — 22 p. — http://events.iaik.t....
- Marc, S. Chosen-prefix collisions for MD5 and applications / Stevens Marc, K. Lenstra Arjen, de Weger Benne // International Journal of Applied Cryptography . — 2012. — pp. 322—359. — https://documents.ep....
- D., E. 3. RFC 3174, US Secure Hash Algorithm 1 (SHA1) / Eastlake 3rd D., Jones P. — 2001. — 22 p. — https://tools.ietf.o....
КатегорияКриптография