Это старая версия (1.8) ПреобразованиеФурье.

Содержание

Преобразование Фурье

Только не кидайте меня в терновый куст!
Сказки дядюшки Римуса.

Тезисы:

  • Сигнал представляется как функция по времени: зависимость амплитуды от времени (по абсциссе — время, по ординате — амплитуда). Это представление сигнала — представление в домене времени.
  • Это представление неудобно (почему? потому что бесполезно, например ЭКГ, сейсмические данные — проблемы с сердцем или сейсмическую активность фиксируют по частотам). Удобнее анализировать сигнал в частотном представлении (представление в домене частот).
  • Преобразование Фурье позволяет переводить сигнал из домена времени в домен частот. Обратное преобразование Фурье позволяет переводить сигнал из домена частот в домен времени.
  • Зачем эти преобразования? Легче перевести сигнал из домена времени в домен частот, изъять из него нужную информацию (заменить этот бред), а потом перевести полученные результаты обратно в домен времени.
  • Фурье решал своё именное дифференциальное уравнение теплопроводности (для краевой задачи — задачи нагревания стержня). Уравнение было аналитически неразрешимо, поэтому он и придумал преобразование имени себя.
  • Функция в домене времени — функция действительного (вещественного) аргумента — называется функцией-образом. Функция в домене частот — функция комплексного аргумента — называется Фурье-образом или просто образом. Это похоже на логику дифференцирования и интегрирования.
  • Комплексный аргумент имеет две части: действительную и мнимую — что позволяет одним комплексным числом описывать процесс, характеристиками которого являются амплитуда и фаза.


КатегорияИнтегральныеПреобразования