Это старая версия (1.20) ДисперсияСлучайнойВеличины.

Содержание

Дисперсия случайной величины

Черновик. Черновик. Черновик. Не бросайте меня в терновый куст.

Мера разброса случайной величины. Второй центральный момент.

Дисперсия — это мера отклонения значений выборки от её среднего.

Для иллюстрации рассмотрим два примера: очень простой и простой.

Очень простой пример

Предположим, у нас есть две выборки размера n = 5 : bold x = (7, 8, 10, 12, 13) и bold y = (2, 7, 12, 13, 16). Средние этих выборок равны x bar = y bar = 10 , но видно, что первая выборка гораздо более компактно располагается вокруг своего среднего значения, а вторая — более рассеянна относительно него.

Попробуем численно показать этот интуитивный факт. Для этого посмотрим, насколько сильно отклоняются от среднего значения наших выборок. Чтобы нивелировать влияние разносторонних выборосов (что-то дало отклонение в плюс, а что-то в минус), мы используем сумму квадратов отклонений значений от среднего. Такая сумма и будет называться дисперсией или вариацией: roman D \[X\] = {sum from i=1 to n (x sub i - x bar ) sup 2} over {n}

Для первой выборки: roman D \[ bold x \] = 
size -2 {{(7 - 10) sup 2 + (8 - 10) sup 2 + (10 - 10) sup 2 + (12 - 10) sup 2 + (13 - 10) sup 2} over 5} =
size -2 {{(-3) sup 2 + (-2) sup 2 + 0 sup 2 + 2 sup 2 + 3 sup 2} over 5} = 
size -2 {26 over 5} = 5,2
}

Для второй выборки


КатегорияПрикладнаяМатематика | КатегорияТеорияВероятностей