Случайная величина

Исторически теория вероятностей развилась из потребности анализировать азартные игры, поэтому в данной статье, как и во многих других источниках, в качестве примеров взяты сюжеты из азартных игр.

Содержание

Определение

Предположим, что у нас есть игральная кость, — небольшой куб из какого-то материала, на гранях которого последовательно нанесены от одной до шести точек. Мы будем предполагать, что геометрический центр игральной кости соответствует центру её массы.

Нашим экспериментом будет подбрасывание игральной кости. По результатам эксперимента может произойти одно из следующих событий:

  • на верхней грани игральной кости выпадет одна точка,
  • на верхней грани игральной кости выпадет две точки,
  • ...,
  • на верхней грани игральной кости выпадет шесть точек.

Выпадение грани с тем или иным количеством точек называется элементарным исходом (или элементарным событием) и обозначается греческой буквой omega с индексом:

  • omega sub 1 — выпадение на верхней грани одной точки,
  • omega sub 2 — выпадение на верхней грани двух точек,
  • ...,
  • omega sub 6 — выпадение на верхней грани шести точек.

Никакие два элементарных исхода не могут случится в рамках одного эксперимента одновременно.

Множество всех возможных элементарных исходов (элементарных событий) будем называть пространством элементарных исходов (или пространством элементарных событий) и обозначим Omega = \\(lC omega sub 1, ldots , omega sub 6 \\(rC. Поскольку в рамках нашего эксперимента реализуется хотя бы одних из элементарных исходов, то мы может называть множество Omega достоверным событием.

Случайное событие — это любое подмножество элементарных исходов. Например :

  • случайное событие A sub 1 = \\(lC omega sub 1 , omega sub 3 , omega sub 5 \\(rC — событие «на верхней грани игральной кости выпало нечётное число точек»,
  • случайное событие A sub 2 = \\(lC omega sub 2 , omega sub 4 , omega sub 6 \\(rC — событие «на верхней грани игральной кости выпало чётное число точек»,
  • случайное событие A sub 3 = \\(lC omega sub 1 , omega sub 2 , omega sub 3 \\(rC — событие «на верхней грани игральной кости выпало число точек, не превосходящее трёх».

В отличии от элементарных исходов, случайные события могут происходить одновременно в рамках одного эксперимента. Например, одновременно могут случиться события A sub 1 и A sub 3, например, если выпадет одна точка (нечётное число точек, при этом не превосходящее трёх).

Оперировать случайными событиями далеко не всегда удобно. Поэтому вместо случайных событий вводят их числовые «идентификаторы» или числовые «номиналы». В нашем примере с игральной костью в роли такого номинала может использоваться значение числа точек, выпавших на верхней грани игральной кости по время эксперимента.


КатегорияПрикладнаяМатематика | КатегорияТеорияВероятностей